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Abstract. We provide a careful treatment of the weak Hardy spaces Hp,∞(Rn)
for all indices 0 < p < ∞. The study of these spaces presents differences from the
study of the Hardy-Lorentz spaces Hp,q(Rn) for q <∞, due to the lack of a good
dense subspace of them. We obtain several properties of weak Hardy spaces and
we discuss a new square function characterization for them, obtained by He [16].
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1. Introduction

The impact of the theory of Hardy spaces in the last forty years has been significant.
The higher dimensional Euclidean theory of Hardy spaces was developed by Fefferman
and Stein [10] who proved a variety of characterizations for them. A deep atomic
decomposition characterization of these spaces was given by Coifman [3] in dimension
one and by Latter [18] in higher dimensions. The treatments of Hardy spaces in Lu
[19], Garćıa-Cuerva and Rubio de Francia [11], Grafakos [13], Stein [24], and Triebel
[25] cover the main aspects of their classical theory in the Euclidean setting. Among
hundreds of references on this topic, the works of Coifman, and Weiss [4], Maćıas,
and Segovia [22], Duong, and Yan [7], Han, Müller and Yang [15], Hu, Yang, and
Zhou [17] contain powerful extensions of the theory of Hardy spaces to the setting
of spaces of homogeneous type. A new type of Hardy space, called Herz-type Hardy
space was introduced by Lu and Yang [21] to measure the localization fine-tuned on
cubical shells centered at the origin.

In this work we provide a careful treatment of the weak Hardy space Hp (henceforth
Hp,∞) on Rn for 0 < p < ∞. This is defined as the space of all bounded tempered
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distributions whose Poisson maximal function lies in weak Lp (or Lp,∞). The study of
these spaces presents certain crucial differences from the study of the Hardy-Lorentz
spaces Hp,q when q < ∞, due to the fact that they lack a good dense subspace of
smooth functions such as the Schwartz class; this is explained in Theorem 6 and it was
also observed by Fefferman and Soria [9]. As a consequence, certain results concerning
these spaces cannot be proved by restricting attention to the Schwartz class. In this
article we bypass this difficulty to obtain several maximal characterizations of weak
Hardy spaces working directly from the definition and we prove an interpolation
result for these spaces working with general bounded distributions.

It is well known that function spaces can be characterized in terms of Littlewood-
Paley square function expressions. Such characterizations are given in Ding, Lu, Xue
[6], Lu, Yang [20], Peetre [23], and Triebel [25], but we discuss here a new square
function characterization of Hp,∞ in terms of the Littlewood-Paley operators, a result
that was recently obtained by He [16].

Fefferman, Riviere, and Sagher [8], Fefferman and Soria [9], Alvarez [2], Abu-
Shammala and Torchinsky [1] have obtained a variety of results concerning the weak
Hp spaces. Fefferman, Riviere, and Sagher [8] have studied interpolation between
the Hardy-Lorentz spaces Hp,q. Fefferman and Soria [9] carefully investigated the
space H1,∞, and they provided its atomic decomposition. Alvarez [2] provided the
atomic decomposition of the spaces Hp,∞ and she also studied the action of singular
integrals on them. In [8], Fefferman, Riviere and Sagher obtained the spaces Hp,q as
an intermediate interpolation space of Hardy spaces, but their proof was only given
for Schwartz functions which are not dense in Hp,∞, and thus their proof contains
an incomplete deduction in the case q = ∞. He [16] overcomes the technical issues
arising from the lack of density of Schwartz functions via a Calderón-Zygmund type
decomposition for general weak Hp distributions. Some results in the literature of
weak Hardy spaces are based on the interpolation result in [8] and possibly on the
assumption that locally integrable functions are dense in this space. Although the
latter is unknown as of this writing, the former is possible and is explained here.

Our exposition builds the theory of weak Hardy spaces, starting from the classical
definition of the Poisson maximal function. We discuss various maximal characteri-
zations of these spaces and we state an interpolation theorem for Hp,∞ from initial
strong Hp0 and Hp1 estimates with p0 < p < p1. Using this interpolation result,
the second author [16] has obtained a new square function characterization for the
spaces Hp,∞, which is presented here without proof. This characterization is based
on a singular integral estimate for vector-valued weak Hp spaces. For this reason, we
develop the theory of weak Hardy spaces in the vector-valued setting.

2. Relevant background

To introduce the vector-valued weak Hardy spaces we need a sequence of defini-
tions given in this section. We denote by `2 the space `2(Z) of all square-integrable
sequences and by `2(L) the finite-dimensional space of all sequences of length L ∈ Z+

with the `2 norm. We say that a sequence of distributions {fj}j lies in S ′(Rn, `2) if
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there are constants C,M > 0 such that for every ϕ ∈ S(Rn) we have

∥∥{〈fj, ϕ〉}j∥∥`2 =

(∑
j

|〈fj, ϕ〉|2
)1/2

≤ C
∑

|α|,|β|≤M

sup
y∈Rn

|yβ∂αϕ(y)|.

And this sequence of distributions ~f = {fj}j is called bounded if for any ϕ ∈ S(Rn)
we have

(1)
∥∥{ϕ ∗ fj}j∥∥`2 =

(∑
j

|ϕ ∗ fj|2
)1/2

∈ L∞(Rn).

Let a, b > 0 and let Φ be a Schwartz function on Rn.

Definition 1. For a sequence ~f = {fj}j∈Z of tempered distributions on Rn we define

the smooth maximal function of ~f with respect to Φ as

M(~f ; Φ)(x) = sup
t>0

∥∥{(Φt ∗ fj)(x)}j
∥∥
`2
.

We define the nontangential maximal function with aperture a of ~f with respect to Φ
as

M ∗
a(
~f ; Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

∥∥{(Φt ∗ fj)(y)}j
∥∥
`2
.

We also define the auxiliary maximal function

M ∗∗
b (~f ; Φ)(x) = sup

t>0
sup
y∈Rn

∥∥{(Φt ∗ fj)(x− y)}j
∥∥
`2

(1 + t−1|y|)b
.

For a fixed positive integer N we define the grand maximal function of ~f as

(2) MN(~f ) = sup
ϕ∈FN

M ∗
1(~f ;ϕ) ,

where

(3) FN =
{
ϕ ∈ S(Rn) : NN(ϕ) ≤ 1

}
,

and

NN(ϕ) =

∫
Rn

(1 + |x|)N
∑

|α|≤N+1

|∂αϕ(x)| dx

is the “norm” of ϕ. More generally, we define the “norm” of ϕ adapted to the pair
(x0, R) ∈ Rn ×R+ by setting

NN(ϕ;x0, R) =

∫
Rn

(
1 +

∣∣∣x− x0

R

∣∣∣)N ∑
|α|≤N+1

R|α||∂αϕ(x)| dx .

Note that NN(ϕ; 0, 1) = NN(ϕ).
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If the function Φ is the Poisson kernel, then the maximal functions M (~f ; Φ),

M ∗
a(
~f ; Φ), and M ∗∗

b (~f ; Φ) are well defined for sequences of bounded tempered dis-

tributions ~f = {fj}j in view of (1).
We note that the following simple inequalities

(4) M(~f ; Φ) ≤M ∗
a(
~f ; Φ) ≤ (1 + a)bM ∗∗

b (~f ; Φ)

are valid. We now define the vector-valued Hardy space Hp,∞(Rn, `2).

Definition 2. Let ~f = {fj}j be a sequence of bounded tempered distributions on

Rn and let 0 < p < ∞. We say that ~f lies in the vector-valued weak Hardy space
Hp,∞(Rn, `2) vector-valued Hardy space if the Poisson maximal function

M(~f ;P )(x) = sup
t>0

∥∥{(Pt ∗ fj)(x)}j
∥∥
`2

lies in Lp,∞(Rn). If this is the case, we set∥∥~f ∥∥
Hp,∞(Rn,`2)

=
∥∥M (~f ;P )

∥∥
Lp,∞(Rn)

=
∥∥∥ sup
ε>0

(∑
j

|Pε ∗ fj|2
)1

2
∥∥∥
Lp,∞(Rn)

.

The next theorem provides a characterization of Hp,∞ in terms of different maximal
functions.

Theorem 1. Let 0 < p <∞. Then the following statements are valid:
(a) There exists a Schwartz function Φ with integral 1 and a constant C1 such that

(5)
∥∥M (~f ; Φ)

∥∥
Lp,∞(Rn,`2)

≤ C1

∥∥~f ∥∥
Hp,∞(Rn,`2)

for every sequence ~f = {fj}j of tempered distributions.
(b) For every a > 0 and Φ in S(Rn) there exists a constant C2(n, p, a,Φ) such that

(6)
∥∥M ∗

a(
~f ; Φ)

∥∥
Lp,∞(Rn,`2)

≤ C2(n, p, a,Φ)
∥∥M (~f ; Φ)

∥∥
Lp,∞(Rn,`2)

for every sequence ~f = {fj}j of tempered distributions.
(c) For every a > 0, b > n/p, and Φ in S(Rn) there exists a constant C3(n, p, a, b,Φ)
such that

(7)
∥∥M ∗∗

b (~f ; Φ)
∥∥
Lp,∞(Rn,`2)

≤ C3(n, p, a, b,Φ)
∥∥M ∗

a(
~f ; Φ)

∥∥
Lp,∞(Rn,`2)

for every sequence ~f = {fj}j of tempered distributions.
(d) For every b > 0 and Φ in S(Rn) with

∫
Rn Φ(x) dx 6= 0 there exists a constant

C4(b,Φ) such that if N = [b] + 1 we have

(8)
∥∥MN(~f )

∥∥
Lp,∞(Rn,`2)

≤ C4(b,Φ)
∥∥M ∗∗

b (~f ; Φ)
∥∥
Lp,∞(Rn,`2)

for every sequence ~f = {fj}j of tempered distributions.
(e) For every positive integer N there exists a constant C5(n,N) such that every

sequence ~f = {fj}j of tempered distributions that satisfies
∥∥MN(~f )

∥∥
Lp,∞(Rn,`2)

<∞
is bounded and satisfies

(9)
∥∥~f ∥∥

Hp,∞(Rn,`2)
≤ C5(n,N)

∥∥MN(~f )
∥∥
Lp,∞(Rn,`2)

,
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that is, it lies in the Hardy space Hp,∞(Rn, `2).

We conclude that for bounded distributions ~f = {fj} the following equivalence of
quasi-norms holds∥∥MN(~f )

∥∥
Lp,∞
≈
∥∥M∗∗

b (~f ; Φ)
∥∥
Lp,∞
≈
∥∥M∗

a (~f ; Φ)
∥∥
Lp,∞
≈
∥∥M(~f ; Φ)

∥∥
Lp,∞

with constants that depend only on Φ, a, n, p, and all the preceding quasi-norms are

also equivalent with ‖~f ‖Hp,∞(Rn,`2).
There is an alternative characterization of the weak Hp quasi-norm via the weak

Lp quasi-norm of the associated square function. As usual, we denote by

∆j(f) = ∆Ψ
j (f) = Ψ2−j ∗ f

the Littlewood-Paley operator of f , where Ψt(x) = t−nΨ(x/t).

Theorem 2. ([16]) Let Ψ be a radial Schwartz function on Rn whose Fourier trans-
form is nonnegative, supported in 1

2
+ 1

10
≤ |ξ| ≤ 2 − 1

10
, and satisfies (40). Let ∆j

be the Littlewood–Paley operators associated with Ψ and let 0 < p < ∞. Then there
exists a constant C = Cn,p,Ψ such that for all f ∈ Hp(Rn) we have

(10)
∥∥∥(∑

j∈Z

|∆j(f)|2
)1

2
∥∥∥
Lp,∞
≤ C

∥∥f∥∥
Hp,∞ .

Conversely, suppose that a tempered distribution f satisfies

(11)
∥∥∥(∑

j∈Z

|∆j(f)|2
)1

2
∥∥∥
Lp,∞

<∞ .

Then there exists a unique polynomial Q(x) such that f−Q lies in Hp,∞ and satisfies
the estimate

(12)
1

C

∥∥f −Q∥∥
Hp,∞ ≤

∥∥∥(∑
j∈Z

|∆j(f)|2
)1

2
∥∥∥
Lp,∞

.

The following version of the classical Fefferman-Stein vector-valued inequality [10]
is useful. This result for upper Boyd indices less than infinity is contained in [5] (page
85). A self-contained proof of the following result is contained in [16].

Proposition 1. If 1 < p, q <∞, then for all sequences of functions {fj}j in Lp,∞(`q)
we have

‖‖{M(fj)}‖`q‖Lp,∞ ≤ Cp,q ‖‖{fj}‖`q‖Lp,∞ ,
where M is the Hardy-Littlewood maximal function.

3. The proof of Theorem 1

The proof of this theorem is based on the following lemma whose proof can be
found in [13].
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Lemma 1. Let m ∈ Z+ and let Φ in S(Rn) satisfy
∫
Rn Φ(x) dx = 1. Then there

exists a constant C0(Φ,m) such that for any Ψ in S(Rn), there are Schwartz functions
Θ(s), 0 ≤ s ≤ 1, with the properties

(13) Ψ(x) =

∫ 1

0

(Θ(s) ∗ Φs)(x) ds

and

(14)

∫
Rn

(1 + |x|)m|Θ(s)(x)| dx ≤ C0(Φ,m) smNm(Ψ).

We now prove Theorem 1.

Proof. (a) Consider the function ψ(s) defined on the interval [1,∞) as follows:

(15) ψ(s) =
e

π

1

s
e−
√
2
2

(s−1)
1
4 sin

(√2

2
(s− 1)

1
4

)
.

Clearly ψ(s) decays faster than any negative power of s and satisfies

(16)

∫ ∞
1

sk ψ(s) ds =

{
1 if k = 0,

0 if k = 1, 2, 3, . . . .

We now define the function

(17) Φ(x) =

∫ ∞
1

ψ(s)Ps(x) ds ,

where Ps is the Poisson kernel. Note that the double integral∫
Rn

∫ ∞
1

s

(s2 + |x|2)
n+1
2

s−N ds dx

converges and so it follows from (16) and (17) that
∫
Rn Φ(x) dx = 1. Furthermore,

we have that

Φ̂(ξ) =

∫ ∞
1

ψ(s)P̂s(ξ) ds =

∫ ∞
1

ψ(s)e−2πs|ξ| ds

using that P̂s(ξ) = e−2πs|ξ|. This function is rapidly decreasing as |ξ| → ∞ and the
same is true for all the derivatives

(18) ∂αΦ̂(ξ) =

∫ ∞
1

ψ(s)∂αξ
(
e−2πs|ξ|) ds .

Moreover, the function Φ̂ is clearly smooth on Rn \ {0} and we will show that it also
smooth at the origin. Notice that for all multiindices α we have

∂αξ (e−2πs|ξ|) = s|α|pα(ξ)|ξ|−mαe−2πs|ξ|

for some mα ∈ Z+ and some polynomial pα(ξ). By Taylor’s theorem, for some
function v(s, |ξ|) with 0 ≤ v(s, |ξ|) ≤ 2πs|ξ|, we have

e−2πs|ξ| =
L∑
k=0

(−2π)k
|ξ|k

k!
sk +

(−2πs|ξ|)L+1

(L+ 1)!
e−v(s,|ξ|) .
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Choosing L > mα gives

∂αξ (e−2πs|ξ|) =
L∑
k=0

(−2π)k
|ξ|k

k!
sk+|α|pα(ξ)

|ξ|mα
+ s|α|

pα(ξ)

|ξ|mα
(−2πs|ξ|)L+1

(L+ 1)!
e−v(s,|ξ|),

which inserted in (18) and in view of (16), yields that when |α| > 0, the derivative

∂αΦ̂(ξ) tends to zero as ξ → 0 and when α = 0, Φ̂(ξ) → 1 as ξ → 0. We conclude

that Φ̂ is continuously differentiable, and hence smooth at the origin, hence it lies in
the Schwartz class, and thus so does Φ.

Finally, we have the estimate

M(~f ; Φ)(x) = sup
t>0

(∑
j

|(Φt ∗ fj)(x)|2
)1/2

= sup
t>0

(∑
j

∣∣∣∣ ∫ ∞
1

ψ(s)(Pts ∗ fj)(x) ds

∣∣∣∣2)1/2

≤
(∫ ∞

1

|ψ(s)| ds
)1/2

sup
t>0

(∑
j

∫ ∞
1

|(Pts ∗ fj)(x)|2 |ψ(s)| ds
)1/2

≤
(∫ ∞

1

|ψ(s)| ds
)1/2(∫ ∞

1

sup
t>0

∑
j

|(Pts ∗ fj)(x)|2 |ψ(s)| ds
)1/2

≤
∫ ∞

1

|ψ(s)| dsM(~f ;P )(x) ,

and the required conclusion follows since
∫∞

1
|ψ(s)| ds ≤ C1. We have actually ob-

tained the pointwise estimate M(~f ; Φ) ≤ C1M(~f ;P ) which clearly implies (5).

(b) We present the proof only in the case when a = 1 since the case of general
a > 0 is similar. We derive (6) as a consequence of the estimate

(19)
∥∥M∗

1 (~f ; Φ)
∥∥p
Lp,∞
≤ C ′′2 (n, p,Φ)p

∥∥M(~f ; Φ)
∥∥p
Lp,∞

+
1

2

∥∥M∗
1 (~f ; Φ)

∥∥p
Lp,∞

,

which requires a priori knowledge of the fact that ‖M∗
1 (~f ; Φ)‖Lp,∞ <∞. This presents

a significant hurdle that needs to be overcome by an approximation. For this reason

we introduce a family of maximal functions M∗
1 (~f ; Φ)ε,N for 0 ≤ ε,N <∞ such that

‖M∗
1 (~f ; Φ)ε,N‖Lp < ∞ and such that M∗

1 (~f ; Φ)ε,N ↑ M∗
1 (~f ; Φ) as ε ↓ 0 and we prove

(19) with M∗
1 (~f ; Φ)ε,N in place of M∗

1 (~f ; Φ)ε,N , i.e., we prove

(20)
∥∥ M∗

1 (~f ; Φ)ε,N
∥∥p
Lp,∞
≤ C ′2(n, p,Φ, N)p

∥∥M(~f ; Φ)
∥∥p
Lp,∞

+
1

2

∥∥M∗
1 (~f ; Φ)ε,N

∥∥p
Lp,∞

,

where there is an additional dependence on N in the constant C ′2(n, p,Φ, N), but

there is no dependence on ε. The M∗
1 (~f ; Φ)ε,N are defined as follows: for a bounded



8 LOUKAS GRAFAKOS AND DANQING HE

distribution ~f in S ′(Rn, `2) such that M(~f ; Φ) ∈ Lp we define

M∗
1 (~f ; Φ)ε,N(x) = sup

0<t< 1
ε

sup
|y−x|<t

(∑
j

∣∣(Φt ∗ fj)(y)
∣∣2)1/2( t

t+ ε

)N 1

(1 + ε|y|)N
.

We first show that M∗
1 (~f ; Φ)ε,N lies in Lp(Rn) ∩ L∞(Rn) if N is large enough

depending on ~f . Indeed, using that (Φt ∗ fj)(x) = 〈fj,Φt(x− ·)〉 and the fact that ~f
is in S ′(Rn, `2), we obtain constants C = C~f and m = m~f , m > n such that:(∑

j

∣∣(Φt ∗ fj)(y)
∣∣2) 1

2

≤ C
∑

|γ|≤m,|β|≤m

sup
w∈Rn

|wγ(∂βΦt)(y − w)|

≤ C
∑
|β|≤m

sup
z∈Rn

(1 + |y|m + |z|m)|(∂βΦt)(z)|

≤ C (1 + |y|m)
∑
|β|≤m

sup
z∈Rn

(1 + |z|m)|(∂βΦt)(z)|

≤ C
(1 + |y|m)

min(tn, tn+m)

∑
|β|≤m

sup
z∈Rn

(1 + |z|m)|(∂βΦ)(z/t)|

≤ C
(1 + |y|)m

min(tn, tn+m)
(1 + tm)

∑
|β|≤m

sup
z∈Rn

(1 + |z/t|m)|(∂βΦ)(z/t)|

≤ C~f,Φ(1 + ε|y|)mε−m(1 + tm)(t−n + t−n−m) .

Multiplying by ( t
t+ε

)N(1 + ε|y|)−N for some 0 < t < 1
ε

and |y − x| < t yields(∑
j

∣∣(Φt ∗ fj)(y)
∣∣2)1/2( t

t+ ε

)N 1

(1 + ε|y|)N
≤ C~f,Φ

ε−m(1 + ε−m)(εn−N + εn+m−N)

(1 + ε|y|)N−m
,

and using that 1 + ε|y| ≥ 1
2
(1 + ε|x|), we obtain for some C ′′(~f,Φ, ε, n,m,N) <∞,

M∗
1 (~f ; Φ)ε,N(x) ≤ C ′′(~f,Φ, ε, n,m,N)

(1 + ε|x|)N−m
.

Taking N > m + n/p, we have that M∗
1 (~f ; Φ)ε,N lies in Lp,∞(Rn). This choice of N

depends on m and hence on the sequence of distributions ~f = {fj}j.
We now introduce functions

U(~f ; Φ)ε,N(x) = sup
0<t< 1

ε

sup
|y−x|<t

t

(∑
j

∣∣∇(Φt ∗ fj)(y)
∣∣2)1/2( t

t+ ε

)N 1

(1 + ε|y|)N

and

V (~f ; Φ)ε,N(x) = sup
0<t< 1

ε

sup
y∈Rn

[∑
j

∣∣(Φt ∗ fj)(y)
∣∣2] 1

2[ t

t+ε

]N 1

(1+ε|y|)N

[
t

t+|x− y|

][ 2n
p

]+1

.
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We need the norm estimate

(21)
∥∥V (~f ; Φ)ε,N

∥∥
Lp,∞
≤ C(n)

2
p

∥∥M∗
1 (~f ; Φ)ε,N

∥∥
Lp,∞

and the pointwise estimate

(22) U(~f ; Φ)ε,N ≤ A(n, p,Φ, N)V (~f ; Φ)ε,N ,

where

A(Φ, N, n, p) = 2[ 2n
p

]+1
n∑
j=1

C0(∂jΦ, N + [2n
p

] + 1)NN+[ 2n
p

]+1(∂jΦ) .

To prove (21) we observe that when z ∈ B(y, t) ⊆ B(x, |x− y|+ t) we have(∑
j

∣∣(Φt ∗ fj)(y)
∣∣2) 1

2( t

t+ ε

)N 1

(1 + ε|y|)N
≤M∗

1 (f ; Φ)ε,N(z) ,

from which it follows that for any y ∈ Rn,(∑
j

∣∣(Φt ∗ fj)(y)
∣∣2) 1

2( t

t+ ε

)N 1

(1 + ε|y|)N

≤
(

1

|B(y, t)|

∫
B(y,t)

[
M∗

1 (~f ; Φ)ε,N(z)
] p

2 dz

) 2
p

≤
(
|x− y|+ t

t

)2n
p
(

1

|B(x, |x− y|+ t)|

∫
B(x,|x−y|+t)

[
M∗

1 (~f ; Φ)ε,N(z)
] p

2 dz

) 2
p

≤
(
|x− y|+ t

t

)[ 2n
p

]+1

M
([
M∗

1 (~f ; Φ)ε,N
] p

2

) 2
p
(x) .

We now use the boundedness of the Hardy–Littlewood maximal operator M from
L2,∞ to L2,∞ to obtain (21) as follows:∥∥V (~f ; Φ)ε,N

∥∥
Lp,∞

=
∥∥M((M∗

1 (~f ; Φ)ε,N)
p
2

) 2
p
∥∥
L2,∞

=
∥∥M((M∗

1 (~f ; Φ)ε,N)
p
2

)∥∥ 2
p

L2,∞

≤ C(n)
2
p

∥∥(M∗
1 (~f ; Φ)ε,N)

p
2

∥∥ 2
p

L2,∞

= C(n)
2
p

∥∥M∗
1 (~f ; Φ)ε,N

∥∥
Lp,∞

In proving (22), we may assume that Φ has integral 1; otherwise we can multiply
Φ by a suitable constant to arrange for this to happen. We note that for each x ∈ Rn

we have

t
∥∥∇(Φt ∗ ~f )(x)

∥∥
`2

=
∥∥(∇Φ)t ∗ ~f (x)

∥∥
`2
≤
√
n

n∑
j=1

∥∥(∂jΦ)t ∗ ~f (x)
∥∥
`2
,
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and it suffices to work with each partial derivative ∂jΦ. Using Lemma 1 we write

∂jΦ =

∫ 1

0

Θ(s) ∗ Φs ds

for suitable Schwartz functions Θ(s). Fix x ∈ Rn, t > 0, and y with |y−x| < t < 1/ε.
Then we have∥∥((∂jΦ)t ∗ ~f

)
(y)
∥∥
`2

( t

t+ ε

)N 1

(1 + ε|y|)N

=
( t

t+ ε

)N 1

(1 + ε|y|)N

∥∥∥∥∫ 1

0

(
(Θ(s))t ∗ Φst ∗ ~f

)
(y) ds

∥∥∥∥
`2

≤
( t

t+ ε

)N ∫ 1

0

∫
Rn

t−n
∣∣Θ(s)(t−1z)

∣∣ ∥∥(Φst ∗ ~f
)
(y − z)

∥∥
`2

(1 + ε|y|)N
dz ds .

(23)

Inserting the factor 1 written as(
ts

ts+ |x− (y − z)|

)[ 2n
p

]+1(
ts

ts+ ε

)N(
ts+ |x− (y − z)|

ts

)[ 2n
p

]+1(
ts+ ε

ts

)N
in the preceding z-integral and using that

1

(1 + ε|y|)N
≤ (1 + ε|z|)N

(1 + ε|y − z|)N

and the fact that |x− y| < t < 1/ε, we obtain the estimate

( t

t+ ε

)N ∫ 1

0

∫
Rn

t−n
∣∣Θ(s)(t−1z)

∣∣ ∥∥(Φst ∗ ~f
)
(y − z)

∥∥
`2

(1 + ε|y|)N
dz ds

≤ V (~f ; Φ)ε,N(x)

∫ 1

0

∫
Rn

(1 + ε|z|)N
(
ts+ |x− (y − z)|

ts

)[ 2n
p

]+1

t−n
∣∣Θ(s)(t−1z)

∣∣ dz ds
sN

≤ V (~f ; Φ)ε,N(x)

∫ 1

0

∫
Rn

s−[ 2n
p

]−1−N(1 + εt|z|)N(s+ 1 + |z|)[ 2n
p

]+1
∣∣Θ(s)(z)

∣∣ dz ds
≤ 2[ 2n

p
]+1C0(∂jΦ, N + [2n

p
] + 1)NN+[ 2n

p
]+1(∂jΦ)V (~f ; Φ)ε,N(x)

in view of conclusion (14) of Lemma 1. Combining this estimate with (23), we deduce
(22). Estimates (21) and (22) together yield

(24)
∥∥U(~f ; Φ)ε,N

∥∥
Lp,∞
≤ C(n)

2
p A(n, p,Φ, N)

∥∥M∗
1 (~f ; Φ)ε,N

∥∥
Lp,∞

.

We now set

Eε =
{
x ∈ Rn : U(~f ; Φ)ε,N(x) ≤ KM∗

1 (~f ; Φ)ε,N(x)
}
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for some constant K to be determined shortly. With A = A(n, p,Φ, N) we have∥∥M∗
1 (~f ; Φ)ε,N

∥∥p
Lp,∞((Eε)c)

≤ 1

Kp

∥∥U(~f ; Φ)ε,N
∥∥p
Lp,∞((Eε)c)

≤ 1

Kp

∥∥U(~f ; Φ)ε,N
∥∥p
Lp,∞

≤ C(n)2Ap

Kp

∥∥M∗
1 (~f ; Φ)ε,N

∥∥p
Lp,∞

≤ 1

2

∥∥M∗
1 (~f ; Φ)ε,N

∥∥p
Lp,∞

,

(25)

provided we choose K such that Kp = 2C(n)pA(n, p,Φ, N)p. Obviously K is a
function of n, p,Φ, N and in particular depends on N .

It remains to estimate the weak Lp,∞ quasi-norm of M∗
1 (f ; Φ)ε,N over the set Eε.

We claim that the following pointwise estimate is valid:

(26) M∗
1 (~f ; Φ)ε,N(x) ≤ 4C ′(n,N,K)

1
q

[
M
(
M(~f ; Φ)q

)
(x)
] 1
q

for any x ∈ Eε and 0 < q < ∞ and some constant C ′(n,N,K), where M is the
Hardy-Littlewood maximal operator. For the proof of (26) we cite [13] in the scalar
case, but we indicate below why the proof also holds in the vector-valued setting.

To prove (26) we fix x ∈ Eε and we also fix y such that |y − x| < t.
By the definition of M∗

1 (f ; Φ)ε,N(x) there exists a point (y0, t) ∈ Rn+1
+ such that

|x− y0| < t < 1
ε

and

(27)
∥∥(Φt ∗ ~f )(y0)

∥∥
`2

( t

t+ ε

)N 1

(1 + ε|y0|)N
≥ 1

2
M∗

1 (~f ; Φ)ε,N(x) .

By the definitions of Eε and U(~f ; Φ)ε,N , for any x ∈ Eε we have

(28) t
∥∥∇(Φt ∗ ~f )(ξ)

∥∥
`2

( t

t+ ε

)N 1

(1 + ε|ξ|)N
≤ KM∗

1 (~f ; Φ)ε,N(x)

for all ξ satisfying |ξ − x| < t < 1
ε
. It follows from (27) and (28) that

(29) t
∥∥∇(Φt ∗ ~f )(ξ)

∥∥ ≤ 2K
∥∥(Φt ∗ ~f )(y0)

∥∥
`2

(
1 + ε|ξ|
1 + ε|y0|

)N
for all ξ satisfying |ξ− x| < t < 1

ε
. We let z be such that |z− x| < t and |z− y0| < t.

Applying the mean value theorem and using (29), we obtain, for some ξ between y0

and z,∥∥(Φt ∗ ~f )(z)− (Φt ∗ ~f )(y0)
∥∥
`2

=
∥∥∇(Φt ∗ ~f )(ξ)

∥∥
`2
|z − y0|

≤ 2K

t

∥∥(Φt ∗ ~f )(ξ)
∥∥
`2

(
1 + ε|ξ|
1 + ε|y0|

)N
|z − y0|

≤ 2N+1K

t

∥∥(Φt ∗ ~f )(y0)
∥∥
`2
|z − y0|

≤ 1

2

∥∥(Φt ∗ ~f )(y0)
∥∥
`2
,



12 LOUKAS GRAFAKOS AND DANQING HE

provided z also satisfies |z − y0| < 2−N−2K−1t in addition to |z − x| < t. Therefore,
for z satisfying |z − y0| < 2−N−2K−1t and |z − x| < t we have∥∥(Φt ∗ ~f )(z)

∥∥
`2
≥ 1

2

∥∥(Φt ∗ ~f )(y0)
∥∥
`2
≥ 1

4
M∗

1 (~f ; Φ)ε,N(x) ,

where the last inequality uses (27). Thus we have

M
(
M(~f ; Φ)q

)
(x) ≥ 1

|B(x, t)|

∫
B(x,t)

[
M(~f ; Φ)(w)

]q
dw

≥ 1

|B(x, t)|

∫
B(x,t)∩B(y0,2−N−2K−1t)

[
M(~f ; Φ)(w)

]q
dw

≥ 1

|B(x, t)|

∫
B(x,t)∩B(y0,2−N−2K−1t)

1

4q
[
M∗

1 (~f ; Φ)ε,N(x)
]q
dw

≥ |B(x, t) ∩B(y0, 2
−N−2K−1t)|

|B(x, t)|
1

4q
[
M∗

1 (~f ; Φ)ε,N(x)
]q

≥ C ′(n,N,K)−14−q
[
M∗

1 (~f ; Φ)ε,N(x)
]q
,

where we used the simple geometric fact that if |x− y0| ≤ t and δ > 0, then

|B(x, t) ∩B(y0, δt)|
|B(x, t)|

≥ cn,δ > 0 ,

the minimum of this constant being obtained when |x− y0| = t. This proves (26).
Taking q = p/2 and applying the boundedness of the Hardy–Littlewood maximal

operator on L2,∞ yields

(30)
∥∥M∗

1 (~f ; Φ)ε,N
∥∥
Lp,∞(Eε)

≤ C ′2(n, p,Φ, N)
∥∥M(~f ; Φ)

∥∥
Lp,∞

.

Combining this estimate with (25), we finally prove (20).

Recalling the fact (obtained earlier) that ‖M∗
1 (~f ; Φ)ε,N‖Lp,∞ <∞, we deduce from

(20) that

(31)
∥∥M∗

1 (~f ; Φ)ε,N
∥∥
Lp,∞
≤ 2

1
pC ′2(n, p,Φ, N)

∥∥M(~f ; Φ)
∥∥
Lp,∞

.

The preceding constant depends on ~f but is independent of ε. Notice that

M∗
1 (~f ; Φ)ε,N(x) ≥ 2−N

(1 + ε|x|)N
sup

0<t<1/ε

( t

t+ ε

)N
sup
|y−x|<t

∥∥(Φt ∗ ~f )(y)
∥∥
`2

and that the previous expression on the right increases to

2−NM∗
1 (~f ; Φ)(x)

as ε ↓ 0. Since the constant in (31) does not depend on ε, an application of the
Lebesgue monotone convergence theorem yields

(32) ‖M∗
1 (~f ; Φ)‖Lp,∞ ≤ 2N+ 1

pC ′2(n, p,Φ, N)‖M(~f ; Φ)‖Lp,∞ .
The problem with this estimate is that the finite constant 2NC ′2(n, p,Φ, N) depends

on N and thus on ~f . However, we have managed to show that under the assumption

‖M(~f ; Φ)‖Lp,∞ <∞, one must necessarily have ‖M∗
1 (~f ; Φ)‖Lp,∞ <∞ .
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Keeping this significant observation in mind, we repeat the preceding argument

from the point where the functions U(~f ;φ)ε,N and V (~f ;φ)ε,N are introduced, setting
ε = N = 0. Then we arrive to (19) with a constant C ′′2 (n, p,Φ) = C ′2(n, p,Φ, 0)

which is independent of N and thus of ~f . We conclude the validity of (6) with
C2(n, p, 1,Φ) = 21/pC ′′2 (n, p,Φ) when a = 1. An analogous constant is obtained for
different values of a > 0.

(c) Let B(x,R) denote a ball centered at x with radius R. Recall that

M∗∗
b (~f ; Φ)(x) = sup

t>0
sup
y∈Rn

‖(Φt ∗ ~f )(x− y)‖`2( |y|
t

+ 1
)b .

It follows from the definition

M∗
a (~f ; Φ)(z) = sup

t>0
sup

|w−z|<at
‖(Φt ∗ ~f )(w)‖`2

that
‖(Φt ∗ ~f )(x− y)‖`2 ≤M∗

a (~f ; Φ)(z) if z ∈ B(x− y, at) .
But the ball B(x− y, at) is contained in the ball B(x, |y|+ at); hence it follows that

‖(Φt ∗ ~f )(x− y)‖
n
b

`2 ≤
1

|B(x− y, at)|

∫
B(x−y,at)

M∗
a (~f ; Φ)(z)

n
b dz

≤ 1

|B(x− y, at)|

∫
B(x,|y|+at)

M∗
a (~f ; Φ)(z)

n
b dz

≤
(
|y|+ at

at

)n
M
(
M∗

a (~f ; Φ)
n
b

)
(x)

≤ max(1, a−n)

(
|y|
t

+ 1

)n
M
(
M∗

a (~f ; Φ)
n
b

)
(x) ,

from which we conclude that for all x ∈ Rn we have

M∗∗
b (~f ; Φ)(x) ≤ max(1, a−b)

{
M
(
M∗

a (~f ; Φ)
n
b

)
(x)
} b
n
.

We now take Lp,∞ norms on both sides of this inequality and using the fact that
pb/n > 1 and the boundedness of the Hardy–Littlewood maximal operator M from
Lpb/n,∞ to itself, we obtain the required conclusion (7).

(d) In proving (d) we may replace b by the integer b0 = [b] + 1. Let Φ be a
Schwartz function with integral equal to 1. Applying Lemma 1 with m = b0, we
write any function ϕ in FN as

ϕ(y) =

∫ 1

0

(Θ(s) ∗ Φs)(y) ds

for some choice of Schwartz functions Θ(s). Then we have

ϕt(y) =

∫ 1

0

((Θ(s))t ∗ Φts)(y) ds
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for all t > 0. Fix x ∈ Rn. Then for y in B(x, t) we have

‖(ϕt ∗ ~f )(y)‖`2 ≤
∫ 1

0

∫
Rn

|(Θ(s))t(z)| ‖(Φts ∗ ~f )(y − z)‖`2 dz ds

≤
∫ 1

0

∫
Rn

|(Θ(s))t(z)|M∗∗
b0

(~f ; Φ)(x)

(
|x− (y − z)|

st
+ 1

)b0
dz ds

≤
∫ 1

0

s−b0
∫
Rn

|(Θ(s))t(z)|M∗∗
b0

(~f ; Φ)(x)

(
|x− y|
t

+
|z|
t

+ 1

)b0
dz ds

≤ 2b0M∗∗
b0

(~f ; Φ)(x)

∫ 1

0

s−b0
∫
Rn

|Θ(s)(w)|
(
|w|+ 1

)b0 dw ds

≤ 2b0M∗∗
b0

(~f ; Φ)(x)

∫ 1

0

s−b0C0(Φ, b0) sb0 Nb0(ϕ) ds ,

where we applied conclusion (14) of Lemma 1. Setting N = b0 = [b] + 1, we obtain
for y in B(x, t) and ϕ ∈ FN ,

‖(ϕt ∗ ~f )(y)‖`2 ≤ 2b0C0(Φ, b0)M∗∗
b0

(~f ; Φ)(x) .

Taking the supremum over all y in B(x, t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN(~f )(x) ≤ 2b0C0(Φ, b0)M∗∗
b0

(~f ; Φ)(x) , x ∈ Rn,

where N = b0. This clearly yields (8) if we set C4 = 2b0C0(Φ, b0).

(e) We fix an ~f ∈ S ′(Rn) that satisfies ‖MN(~f )‖Lp,∞ <∞ for some fixed positive

integer N . To show that ~f is a bounded distribution, we fix a Schwartz function ϕ
and we observe that for some positive constant c = cϕ, we have that c ϕ is an element

of FN and thus M∗
1 (~f ; c ϕ) ≤MN(~f ). Then

c ‖(ϕ ∗ ~f )(x)‖`2 ≤ sup
|z−y|≤1

‖(cϕ ∗ ~f )(z)‖`2 ≤M∗
1 (~f ; cϕ)(y) ≤MN(~f )(y)

for |y − x| ≤ 1. So let λ = c ‖(ϕ ∗ ~f )(x)‖`2 and then the inequality

(33) v
1
p
n
λ
2
≤ λ

2
|{MN(~f ) > λ

2
}|

1
p ≤ ‖MN(~f )‖Lp,∞ <∞

shows that λ is finite and can be controlled by 2‖MN(~f )‖Lp,∞v
− 1
p

n . Here vn = |B(0, 1)|
is the volume of the unit ball in Rn. This implies that ‖ϕ∗ ~f ‖`2 is a bounded function.

We conclude that ~f is a bounded distribution. We now show that ~f is an element of
Hp,∞. We fix a smooth function with compact support θ such that

θ(x) =

{
1 if |x| < 1,

0 if |x| > 2.
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We observe that the identity

P (x) = P (x)θ(x) +
∞∑
k=1

(
θ(2−kx)P (x)− θ(2−(k−1)x)P (x)

)
= P (x)θ(x) +

Γ(n+1
2

)

π
n+1
2

∞∑
k=1

2−k
(
θ( · )− θ(2( · ))

(2−2k + | · |2)
n+1
2

)
2k

(x)

is valid for all x ∈ Rn. Setting

Φ(k)(x) =
(
θ(x)− θ(2x)

) 1

(2−2k + |x|2)
n+1
2

,

we note that for some fixed constant c0 = c0(n,N), the functions c0 θ P and c0Φ(k)

lie in FN uniformly in k = 1, 2, 3, . . . .

Lemma 2. Let f be a bounded distribution on Rn. Then we have

(P ∗ f)(x) = ((θP ) ∗ f)(x) +
Γ(n+1

2
)

π
n+1
2

∞∑
k=1

2−k(Φ
(k)

2−k
∗ f)(x)

for all x ∈ Rn, where the series converges in S ′(Rn).

Combining this observation with the identity for P (x) obtained earlier, we conclude
that

sup
t>0
‖Pt ∗ ~f ‖`2 ≤ sup

t>0
‖(θP )t ∗ ~f ‖`2 +

1

c0

Γ(n+1
2

)

π
n+1
2

sup
t>0

∞∑
k=1

2−k
∥∥(c0Φ(k))2kt ∗ ~f

∥∥
`2

≤ C5(n,N)MN(~f ) ,

which proves the required conclusion (9).
We observe that the last estimate also yields the stronger estimate

(34) M∗
1 (~f ;P )(x) = sup

t>0
sup
y∈Rn

|y−x|≤t

|(Pt ∗ ~f )(y)| ≤ C5(n,N)MN(~f )(x) .

It follows that the quasinorm ‖M∗
1 (~f ;P )‖Lp,∞ is at most a constant multiple of

‖MN(~f )‖Lp,∞ and thus it is also equivalent to ‖~f ‖Hp,∞ .
This concludes the proof of Theorem 1 �

It remains to prove Lemma 2.

Proof of Lemma 2. We begin with the identity

P (x) = P (x)θ(x) +
∞∑
k=1

(
θ(2−kx)P (x)− θ(2−(k−1)x)P (x)

)
= P (x)θ(x) +

Γ(n+1
2

)

π
n+1
2

∞∑
k=1

2−k
(
θ( · )− θ(2( · ))

(2−2k + | · |2)
n+1
2

)
2k

(x)

which is valid for all x ∈ Rn.
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Fix a function φ ∈ S(Rn) whose Fourier transform is equal to 1 in a neighborhood
of zero. Then f = φ∗f+(δ0−φ)∗f and we also have Pt∗f = Pt∗φ∗f+Pt∗(δ0−φ)∗f .
Given a function ψ in S(Rn) we need to show that

〈
(θP )t ∗ φ ∗ f, ψ

〉
+

Γ(n+1
2

)

π
n+1
2

N∑
k=1

2−k
〈
(Φ(k))2kt ∗ φ ∗ f, ψ

〉
→ 〈Pt ∗ φ ∗ f, ψ〉

and〈
(θP )t∗(δ0−φ)∗f, ψ

〉
+

Γ(n+1
2

)

π
n+1
2

N∑
k=1

2−k
〈
(Φ(k))2kt∗(δ0−φ)∗f, ψ

〉
→ 〈Pt∗(δ0−φ)∗f, ψ〉

as N →∞.
The first of these claims is equivalent to〈

φ ∗ f, ψ ∗ (θP )t
〉

+
Γ(n+1

2
)

π
n+1
2

N∑
k=1

2−k
〈
φ ∗ f, ψ ∗ (Φ(k))2kt

〉
→ 〈φ ∗ f, ψ ∗ Pt〉

as N → ∞. Here φ ∗ f ∈ L∞ and the actions 〈·, ·〉 are convergent integrals in all
three cases. This claim will be a consequence of the Lebesgue dominated convergence
theorem since:

ψ ∗ (θP )t +
Γ(n+1

2
)

π
n+1
2

N∑
k=1

2−kψ ∗ (Φ(k))2kt → ψ ∗ Pt

pointwise (which is also a consequence of the Lebesgue dominated convergence the-
orem) as N → ∞ and hence the same is true after multiplying by the bounded
function φ ∗ f and also

|φ ∗ f |
∣∣∣∣ψ ∗ (θP )t +

Γ(n+1
2

)

π
n+1
2

N∑
k=1

2−kψ ∗ (Φ(k))2kt

∣∣∣∣ ≤ |φ ∗ f | (|ψ| ∗ Pt) ∈ L1(Rn).

We now turn to the corresponding assertion where φ is replaced by δ − φ. Using
the Fourier transform, this assertion is equivalent to〈

f̂ , (̂θP )t(1− φ̂)ψ̂
〉

+
Γ(n+1

2
)

π
n+1
2

N∑
k=1

2−k
〈
f̂ , ̂(Φ(k))2kt(1− φ̂)ψ̂

〉
→ 〈f̂ , P̂t(1− φ̂)ψ̂〉

Since f̂ ∈ S ′(Rn), this assertion will be a consequence of the fact that

(̂θP )t(1− φ̂)ψ̂ +
Γ(n+1

2
)

π
n+1
2

N∑
k=1

2−k ̂(Φ(k))2kt(1− φ̂)ψ̂ → P̂t(1− φ̂)ψ̂

in S(Rn). It will therefore be sufficient to show that for all multiindices α and β we
have

sup
ξ∈Rn

∣∣∣∣∂αξ [{(̂θP )t(ξ) +
Γ(n+1

2
)

π
n+1
2

N∑
k=1

2−k ̂(Φ(k))2kt(ξ)− P̂t(ξ)
}

(1− φ̂(ξ))ψ̂(ξ)ξβ
]∣∣∣∣→ 0
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The term inside the curly brackets is equal to the Fourier transform of the function
(θ(2−Nx)− 1)Pt(x), which is∫

Rn

(e−2πt|ξ−ζ| − e−2πt|ξ|)2Nnθ̂(2Nζ) dζ

since θ̂ has integral 1. Note that |ξ| ≥ c > 0 since 1− φ̂(ξ) = 0 in a neighborhood of
zero. Let εN > 0. First consider the integral∫

|ξ−ζ|>εN
(e−2πt|ξ−ζ| − e−2πt|ξ|)2Nnθ̂(2Nζ) dζ .

Both exponentials are differentiable in this range and differentiation gives

∂γξ

∫
|ξ−ζ|>εN

(e−2πt|ξ−ζ| − e−2πt|ξ|)2Nnθ̂(2Nζ) dζ

=

∫
|ξ−ζ|>εN

[
Qγ

(
ξ−ζ
|ξ−ζ| ,

1
|ξ−ζ|

)
e−2πt|ξ−ζ| −Qγ

(
ξ
|ξ| ,

1
|ξ|

)
e−2πt|ξ|

]
2Nnθ̂(2Nζ) dζ ,

where Qγ is a polynomial of the following n+ 1 variables

Qγ

( ξ
|ξ|
,

1

|ξ|

)
= Qγ

( ξ1

|ξ|
, . . . ,

ξn
|ξ|
,

1

|ξ|

)
that depends on γ. Note that∣∣∣∣Qγ

(
ξ−ζ
|ξ−ζ| ,

1
|ξ−ζ|

)
e−2πt|ξ−ζ| −Qγ

(
ξ
|ξ| ,

1
|ξ|

)
e−2πt|ξ|

∣∣∣∣ ≤ C |ζ| .

Thus the integral is bounded by∫
|ξ−ζ|>εN

C 2Nn|ζ|θ̂(2Nζ) dζ = C ′2−N ,

which tends to zero as N →∞. Now consider the integral

∂γξ

∫
|ξ−ζ|≤εN

(e−2πt|ξ−ζ| − e−2πt|ξ|)2Nnθ̂(2Nζ) dζ

= ∂γξ

∫
|ζ|≤εN

(e−2πt|ζ| − e−2πt|ξ|)2Nnθ̂(2N(ξ − ζ)) dζ

in which |ξ| ≥ c > 0. We obtain another expression which is bounded by

C εnN 2N |γ| ≤ C εnN 2N |α| ,

which tends to zero if we pick εN = 2−N |α|/n/N . Finally

sup
ξ∈Rn

∣∣∣∣∂α−γξ

{
(1− φ̂(ξ))ψ̂(ξ)ξβ

}]∣∣∣∣ <∞
and so the claimed conclusion follows by applying Leibniz’s rule to the expression on
which ∂αξ is acting.

Fix a smooth radial nonnegative compactly supported function θ on Rn such that
θ = 1 on the unit ball and vanishing outside the ball of radius 2. Set Φ(k)(x) =
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θ(x) − θ(2x)

)
(2−2k + |x|2)−

n+1
2 for k ≥ 1. Prove that for all bounded tempered

distributions f and for all t > 0 we have

Pt ∗ f = (θP )t ∗ f +
Γ(n+1

2
)

π
n+1
2

∞∑
k=1

2−k(Φ(k))2kt ∗ f ,

where the series converges in S ′(Rn). Here P (x) = Γ(n+1
2

)/π
n+1
2 (1 + |x|2)

n+1
2 is the

Poisson kernel.

�

4. Properties of Hp,∞

The spaces Hp,∞ have several properties analogous to those of the classical Hardy
spaces Hp. Here we provide a list of these properties and we provide proofs for some
of them. The missing proofs can be found in [16].

Theorem 3. Let 1 < p <∞. Then we have Lp,∞ = Hp,∞ and ‖f‖Lp,∞ ≈ ‖f‖Hp,∞.

Theorem 4. (a) For any 0 < p < ∞, every ~f = {fj}j in Hp,∞(Rn, `2), and any
ϕ ∈ S(Rn) we have

(35)
(∑

j

∣∣〈fj, ϕ〉∣∣2)1/2

≤ NN(ϕ) inf
|z|≤1
MN(~f )(z) ,

where N = [n
p
] + 1, and consequently there is a constant Cn,p such that

(36)
(∑

j

∣∣〈fj, ϕ〉∣∣2)1/2

≤ NN(ϕ)Cn,p
∥∥~f ∥∥

Hp,∞ .

(b) Let 0 < p ≤ 1, N = [n/p]+1, and p < r ≤ ∞. Then there is a constant C(p, n, r)

such that for any ~f ∈ Hp,∞ and ϕ ∈ S(Rn) we have

(37)
∥∥(∑

j

∣∣fj ∗ ϕ∣∣2)1/2∥∥
Lr
≤ C(p, n, r)NN(ϕ)

∥∥~f ∥∥
Hp,∞ .

(c) For any x0 ∈ Rn, for all R > 0, and any ψ ∈ S(Rn) we have

(38)
(∑

j

∣∣〈fj, ψ〉∣∣2)1/2

≤ NN(ψ;x0, R) inf
|z−x0|≤R

MN(~f )(z) .

Proposition 2. Let 0 < p < ∞. The following triangle inequality holds for all f, g
in Hp,∞:

‖f + g‖pHp,∞ ≤ 2p(‖f‖pHp,∞ + ‖g‖pHp,∞).

Moreover, we have

‖{fj}‖Hp,∞(Rn, `2) ≈ sup
0<|E|<∞

|E|−
1
r

+ 1
p

(∫
E

sup
t>0

∥∥{(ϕt ∗ fj)(x)}j
∥∥r
`2
dx

) 1
r

for 0 < r < p.
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Proposition 3. For 0 < p <∞, Hp,∞(Rn, `2(L)) are complete quasi-normed spaces.

Theorem 5. Lr is not dense in Lp,∞, whenever 0 < r ≤ ∞ and 0 < p <∞.

The distribution δ1 − δ−1 is used to prove the following result.

Theorem 6. The space of Schwartz functions S is not dense in H1,∞.

Interpolation is a powerful tool that yields results in the theory of weak Hardy
spaces. The following lemma will be useful in the proof of Theorem 9.

Lemma 3. ([16]) Let 0 < p1 < p < p2 <∞. Given ~F = {fk}Lk=1 ∈ Hp,∞(Rn, `2(L))

and α > 0, then there exists ~G = {gk}Lk=1 and ~B = {bk}Lk=1 such that ~F = ~G+ ~B and

‖ ~B ‖p1Hp1 (Rn,`2(L)) ≤ Cαp1−p‖F‖pHp,∞(Rn,`2(L))

and
‖~G‖p2Hp2 (Rn,`2(L)) ≤ Cαp2−p‖~F‖pHp,∞(Rn,`2(L))

where C = C(p1, p2, p, n), in particular is independent of L.

Next, we will discuss the cancellation of Schwartz functions in Hp,∞ for p ≤ 1. We
denote by [a] the integer part of a real number a. We have the following result:

Theorem 7. If f ∈ Hp(Rn), then
∫
Rn x

γf(x) dx = 0 for |γ| ≤ [n
p
−n] if these integrals

converge absolutely. If f ∈ Hp,∞(Rn), then
∫
Rn x

γf(x) dx = 0 for |γ| ≤ −[n− n
p
]− 1

if these integrals converge absolutely.

Proof. For f ∈ Hp, we have |ηt ∗ f(x)| ≤ C

t
n
p
‖f‖Hp and ‖ηt ∗ f‖Lp ≤ C‖f‖Hp , where

η ∈ S with 1 ≥ η̂ ≥ 0, η̂(ξ) = 1 for |ξ| ≤ 1 and 0 for |ξ| ≥ 2. Therefore ‖ηt ∗
f‖L1 ≤ Ctn−

n
p ‖f‖Hp . For each fixed |ξ| we can take t = 1

2|ξ| , which would imply

that |f̂(ξ)| ≤ C|ξ|
n
p
−n‖f‖Hp . All Schwartz functions ψ with

∫
Rn x

γψ = 0 for all γ

are dense in Hp. For such a ψ we have lim|ξ|→0 ψ̂(ξ)/|ξ|
n
p
−n = 0. By the density we

mentioned we know that for all f in Hp we must have lim|ξ|→0 f̂(ξ)/|ξ|
n
p
−n = 0. And

this limit gives us that ∂γ f̂(0) = 0 for |γ| ≤ [n
p
− n], i.e.

∫
Rn x

γf(x)dx = 0, once we

notice that ∂γ f̂(ξ) are well-defined and continuous.
Next we will prove the corresponding result for Hp,∞. By lemma 3 we know

that if f ∈ Hp,∞, then f = h + g with h ∈ Hp1 and g ∈ Hp2 , where p1 < p <
p2. Moreover h and g have the same integrability as f since they’re truncation

of f . We have lim|ξ|→0 ĥ(ξ)/|ξ|
n
p1
−n

= 0 and lim|ξ|→0 ĝ(ξ)/|ξ|
n
p2
−n

= 0, which implies

lim|ξ|→0 f̂(ξ)/|ξ|
n
p2
−n

= 0 for any p2 > p. This result will give us the same cancellation
for f as that in Hp if n

p
− n is not an integer but one degree less if it’s an integer,

namely
∫
Rn x

γf(x) dx = 0 for all |γ| ≤ −[n− n
p
]− 1. �

A natural question is that if the number −[n − n
p
] − 1 is sharp. The fact that

L1 ⊂ H1,∞, which is the result of weak type (1, 1) boundedness of Hardy-Littlewood
maximal function, suggests that this number is sharp. Indeed this is the case and we
give a precise proof below.
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We can get the converse of the previous theorem, i.e. every Schwartz function
satisfying the cancellation of the theorem must be in the corresponding space. We
need the following lemma which can be found in Appendix K.2 of [12].

Lemma 4. Let M,N > 0 and L a nonnegative integer. Suppose that ϕµ and ϕν are
functions on Rn that satisfy

|∂αxϕµ(x)| ≤ Aα2µn2µL

(1 + 2µ|x− xµ|)M
for all |α| = L,

|ϕν(x)| ≤ B2νn

(1 + 2ν |x− xν |)N
,

for some Aα and B positive, and

∫
Rn

ϕν(x)xβdx = 0 for all |β| ≤ L − 1, where the

last condition is supposed to be vacuous when L = 0. Suppose that N > M + L + n
and ν ≥ µ. Then we have∣∣∣∣∫

Rn

ϕµϕν dx

∣∣∣∣ ≤ C
2µn2−(ν−µ)L

(1 + 2µ|xµ − xν |)M
.

Theorem 8. Any f ∈ S with
∫
Rn x

γf(x)dx = 0 for |γ| ≤ [n
p
− n] lies in Hp(Rn).

Any f ∈ S with
∫
Rn x

γf(x)dx = 0 for all |γ| ≤ −[n− n
p
]− 1 lies in Hp,∞(Rn).

Proof. We want to estimate

f+(x) = sup
t>0
|(ψt ∗ f)(x)| = sup

t>0

∣∣∣∣∫
Rn

f(y)ψt(x− y)dy

∣∣∣∣ .
Take ψt = ϕµ, f = ϕν , L = [n

p
− n] + 1 for the first case and −[n − n

p
] for the

second, ν = 0. The condition µ ≤ ν forces t−1 = 2µ ≤ 1. So

sup
t≥1
|
∫
Rn

f(y)ψt(x− y)dy| ≤ C sup
t≥1

t−nt−L

(1 + t−1|x|)M

= C sup
t≥1

1

(t+ |x|)n+L

1

(1 + t−1|x|)M−n−L

≤ C
1

(1 + |x|)n+L
.

If we take f = ϕµ, ψt = ϕν , L0 = 0, µ = 0, then t−1 = 2ν ≥ 1. We have

sup
0<t≤1

∣∣∣∣∫
Rn

f(y)ψt(x− y)dy

∣∣∣∣ ≤ C sup
0<t≤1

2νL0

(1 + |x|)M
≤ C

(1 + |x|)n+L
.

Thus f+(x) is controlled by C(1 + |x|)−[n
p

]−1, which is in Lp, while the second kind
of cancellation implies that f+(x) is in Hp,∞. �

Next we will get a corollary of these two theorems to characterize the class of
Schwartz functions

Sk =
{
f ∈ S(Rn) :

∫
Rn

xγf(x)dx = 0, |γ| ≤ k
}
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in terms of the decay of the corresponding smooth maximal functions of their ele-
ments.

Corollary 1. (i) For a Schwartz function f the following equivalence is valid:

f ∈ Sk ⇔ f+(x) ≤ C

(1 + |x|)n+k+1
;

(ii) For a Schwartz function f if f+(x) ≤ C
(1+|x|)n+k+ε for some ε > 0, then f+(x) ≤

C
(1+|x|)n+k+1 .

Proof. (i) The forward direction comes from the calculation of Theorem 8. The
backwards direction is a result of Theorem 7 since such a function f lies in some Hp

with k = [n
p
− n].

(ii) It’s easy to see that this f is in Hp for p = n
n+k

, therefore f ∈ Sk by Theorem
7, and the conclusion follows by (i). �

A result similar to that Lp ∩ S = Lq ∩ S for p, q ≥ 1 will be revealed by next
corollary.

Corollary 2. (i) Hp ∩ S = Hq ∩ S for p, q ∈ ( n
n+k+1

, n
n+k

], k ∈ N.
(ii) Hp,∞ ∩ S = Hq,∞ ∩ S for p, q ∈ [ n

n+k+1
, n
n+k

), k ∈ N
(iii) Hp,∞ ∩ S = Hp ∩ S for p 6= n

n+k
.

(iv) The statement in (i) fails for p = n
n+k+1

and (ii) fails for p = n
n+k

.
(v) For all f ∈ Sk := Hp ∩ S, p ∈ ( n

n+k+1
, n
n+k

] and all x ∈ Rn, the best estimate for

f+ = supt>0 |(f ∗ ϕt)| is f+(x) ≤ C
(1+|x|)n+k+1 .

Proof. (i) Suppose that f ∈ Hp∩S. Then
∫
Rn x

γf(x)dx = 0 for all |γ| ≤ [n
p
−n]. This

implies that f+(x) ≤ C(1 + |x|)−([n
p
−n]+1+n) and in turn this implies that f ∈ Hq

for [n
q
− n] ≤ [n

p
− n]. This implies the required conclusion since [n

p
] = [n

q
] for

p, q ∈ ( n
n+k+1

, n
n+k

], whenever k ≥ 0.
(ii) The proof is similar to (i) but notice that a given f ∈ Hp,∞ satisfies the

cancellation condition that
∫
Rn x

γf(x) dx = 0 for |γ| ≤ −[n− n
p
]− 1.

(iii) This is a consequence of the fact that [r] = −[−r]− 1 for r is not an integer,
Theorem 7 and Theorem 8.

(iv) Let’s consider only the Hp case since it’s equivalent to the Hp,∞ case. We

can consider g ∈ Sk such that g /∈ Sk+1 (e.g. g(x) = xke−|x|
2
). This g is in Hp for

p ∈ ( n
n+k+1

, n
n+k

] but not p = n
n+k+1

, otherwise g ∈ Sk+1 by Theorem 7.

(v) If we had f+(x) ≤ C
(1+|x|)n+k+1+ε for some ε > 0 and all x ∈ Rn, then it follows

from Corollary 1 that f would belong to H
n

n+k+1 , which is not true by (iv). �

The existence of a function g in (iv) shows that we cannot improve the cancellation
of Theorem 7 for Hp and Hp,∞.
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5. Square function characterization of Hp,∞

In this section we outline the proof of a new characterization of weak Hardy spaces
in terms of Littlewood–Paley square functions; details can be found in [16]. We begin
by stating an interpolation theorem and a consequence of it first.

Theorem 9. Let J and L be positive integers and let 0 < p1 < p < p2 <∞, moreover
p1 ≤ 1.
(a) Let T be a sublinear operator defined on Hp1(Rn, `2(L))+Hp2(Rn, `2(L)). Assume
that T maps Hp1(Rn, `2(L)) to Hp1(Rn, `2(J)) with constant A1 and Hp2(Rn, `2(L))
to Hp2(Rn, `2(J)) with constant A2. Then there exists a constant cp1,p2,p,n independent
of J and L such that

‖T (~F )‖Hp,∞(Rn,`2(J)) ≤ cp1,p2,p,nA

1
p−

1
p2

1
p1
− 1
p2

1 A

1
p1
− 1
p

1
p1
− 1
p2

2 ‖~F‖Hp,∞(Rn,`2(L))

for ~F ∈ Hp,∞(Rn, `2(L)).
(b) Suppose that T is a sublinear operator defined on Hp1(Rn, `2(L))+Hp2(Rn, `2(L)).

Assume that T maps Hp1(Rn, `2(L)) to Lp1(Rn, `2(J)) with constant A1 and also
maps Hp2(Rn, `2(L)) to Lp2(Rn, `2(J)) with constant A2. Then there exists a con-
stant C independent of J and L such that

‖T (~F )‖Lp,∞(Rn,`2(J)) ≤ cp1,p2,p,nA

1
p−

1
p2

1
p1
− 1
p2

1 A

1
p1
− 1
p

1
p1
− 1
p2

2 ‖~F‖Hp,∞(Rn,`2(L))

for all distributions ~F ∈ Hp,∞(Rn, `2(L)).

Corollary 3. Let 0 < p < ∞ and suppose that {Kj(x)}Lj=1 is a family of kernels
defined on Rn\{0} satisfying

L∑
j=1

|∂αKj(x)| ≤ A|x|−n−|α| <∞

for all |α| ≤ max{[n/p] + 2, n+ 1} and

sup
ξ∈Rn

L∑
j=1

|K̂j(ξ)| ≤ B <∞ .

Then for some 0 < p there exists a constant Cn,p independent of L such that

(39)
∥∥∥ L∑
j=1

Kj ∗ fj
∥∥∥
Hp,∞(Rn)

≤ Cn,p(A+B)‖{fj}Lj=1‖Hp,∞(Rn,`2(L)).

We fix a radial function Ψ ∈ S(Rn) such that Ψ̂ is nonnegative, supported in the
annulus 1

2
+ 1

10
≤ |ξ| ≤ 2− 1

10
, and satisfies

(40)
∑
j∈Z

Ψ̂(2−jξ) = 1
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for all ξ 6= 0. We define the related Littlewood–Paley operators ∆j by

(41) ∆j(f) = ∆Ψ
j (f) = Ψ2−j ∗ f .

We also define the function Φ by Φ̂(ξ) =
∑
j≤0

Ψ̂(2−jξ) for ξ 6= 0 and Φ̂(0) = 1. We

now provide a sketch of the proof of Theorem 2.

Proof. Choose f ∈ Hp,∞ and denote fM =
∑
|j|≤M ∆j(f) = Φ2−M ∗ f − Φ2M ∗ f and

S(f) = (
∑
|j|≤M |∆j(f)|2)

1
2 . Then by Theorem 9 it follows that S maps Hp,∞ to Lp,∞

bounded for p ∈ (p1, p2), so

‖S(f)‖Lp,∞ ≤ C‖f‖Hp,∞ .

Applying Fatou’s lemma for Lp,∞ spaces we have

‖(
∑
j∈Z

|∆j(f)|2)
1
2‖Lp,∞ ≤ lim inf

M→∞
‖(
∑
|j|≤M

|∆j(f)|2)
1
2‖Lp,∞ ≤ C‖f‖Hp,∞ .

Now let’s assume we have a distribution f ∈ S ′ such that

‖(
∑
j∈Z

|∆j(f)|2)
1
2‖Lp,∞ <∞.

By lemma 6.5.3 of [13] and Proposition 1, we can show that {∆j∗f}j∈Z ∈ Hp,∞(Rn, l2)
with that ∥∥ sup

t>0
(
∑
j∈Z

|ϕt ∗∆j(f)|2)
1
2

∥∥
Lp,∞
≤ C ′p

∥∥(
∑
j∈Z

(|∆j(f)|)2)
1
2

∥∥
Lp,∞

.

Let η̂(ξ) = Ψ̂(ξ/2) + Ψ̂(ξ) + Ψ̂(2ξ), then by Corollary 3∥∥ ∑
|j|≤M

∆j(f)
∥∥
Hp,∞ ≤ C

∥∥(
∑
j∈Z

(|∆j(f)|)2)
1
2

∥∥
Lp,∞

.

So {
∑
|j|≤M ∆j(f)}M is a bounded sequence in Hp,∞ uniformly in M . Then we use

the following lemma contained in [16].

Lemma 5. If {fj} is bounded by B in Hp,∞ (or Hp), then there exists a subsequence
{fjk} such that fjk → f in S ′ for some f in Hp,∞ (or Hp) with ‖f‖Hp,∞ ≤ B (or
‖f‖Hp ≤ B).

By the lemma
∑
|j|≤Mk

∆j(f) → g in S ′ with ‖g‖Hp,∞ ≤ C‖(
∑
j∈Z

|∆j(f)|2)
1
2‖Lp,∞ .

Moreover there is a unique polynomial Q such that g = f −Q. �

Different functions Ψ provide spaces with equivalent norms. This is easily seen by
the above characterization.

Corollary 4. The definition of space

F p,∞ :=
{
f ∈ S ′ :

∥∥(∑
j∈Z

|∆j(f)|2
) 1

2
∥∥
Lp,∞

<∞
}

is independent of the choice of Ψ.
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This is a consequence of Theorem 2 and can also be a consequence of Proposition
1. The argument also applies to

Fα,q
p =

{
f ∈ S ′ :

∥∥(∑
j∈Z

|2jα∆j(f)|q
) 1
q
∥∥
Lp
<∞

}
,

so we are allowed to define more general spaces generalizing Hp,∞

Fα,q
p,∞ =

{
f ∈ S ′ :

∥∥(∑
j∈Z

|2jα∆j(f)|q
) 1
q
∥∥
Lp,∞

<∞
}
.

The square function characterization of weak Hp has useful applications; for in-
stance it was used in [14] to obtain weak type endpoint estimates for multilinear
paraproducts.
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